Published: Jul 12, 2024
Problem Description
Given a binary tree, determine if it is height-balanced.
A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.
Constraints:
- The number of nodes in the tree is in the range
[0, 5000]
.-10**4 <= Node.val <= 10**4
Examples
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: true
3
/ \
9 20
/ \
15 7
Example 2:
Input: root = [1,2,2,3,3,null,null,4,4]
Output: false
1
/ \
2 2
/ \
3 3
/ \
4 4
Example 3:
Input: root = []
Output: true
How to Solve
A bottom-up recursion is an approach taken here. After reaching children of a leaf node, on the way back to the top, it checks a current height and subtree’s validity. Instead of keeping two values of the height and validity, the solution here uses only one value. If the subtree is not balanced, it returns -1. If the subtree is balanced, it returns the height. When the return value from left or right subtree is -1, return -1 since the tree is no more balanced. If the absolute difference of left and right subtree’s heights is greater than 1, the return value is -1. Only when left and right subtree’s heights are returned (the value other than -1), return the current height as 1 + max(left, right). In the end, check the final return value is -1 or not.
Solution
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
int helper(TreeNode* root) {
if (!root) return 0;
int left = helper(root->left);
if (left == -1) return -1;
int right = helper(root->right);
if (right == -1) return -1;
if (abs(left - right) > 1) return -1;
return 1 + max(left, right);
}
public:
bool isBalanced(TreeNode* root) {
return helper(root) != -1;
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int helper(TreeNode root) {
if (root == null) return 0;
int left = helper(root.left);
if (left == -1) return -1;
int right = helper(root.right);
if (right == -1) return -1;
if (Math.abs(left - right) > 1) return -1;
return 1 + Math.max(left, right);
}
public boolean isBalanced(TreeNode root) {
return helper(root) != -1;
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isBalanced = function(root) {
const helper = (root) => {
if (!root) return 0;
const left = helper(root.left);
if (left == -1) return -1;
const right = helper(root.right);
if (right == -1) return -1;
if (Math.abs(left - right) > 1) return -1;
return 1 + Math.max(left, right);
}
return helper(root) != -1
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: Optional[TreeNode]) -> bool:
def helper(root: Optional[TreeNode]) -> int:
if not root: return 0
left = helper(root.left)
if left == -1: return -1
right = helper(root.right)
if right == -1: return -1
if abs(left - right) > 1: return -1
return 1 + max(left, right)
return helper(root) != -
# Definition for a binary tree node.
# class TreeNode
# attr_accessor :val, :left, :right
# def initialize(val = 0, left = nil, right = nil)
# @val = val
# @left = left
# @right = right
# end
# end
# @param {TreeNode} root
# @return {Boolean}
def helper(root)
return 0 if !root
left = helper(root.left)
return -1 if left == -1
right = helper(root.right)
return -1 if right == -1
return -1 if (left - right).abs > 1
1 + [left, right].max
end
Complexities
- Time:
O(n)
- Space:
O(n)