Published: Oct 20, 2022
Problem Description
Given an integer array
nums
, return the largest perimeter of a triangle with a non-zero area, formed from three of these lengths. If it is impossible to form any triangle of a non-zero area, return 0.Constraints:
3 <= nums.length <= 10**4
1 <= nums[i] <= 10**6
Examples
Example 1
Input: nums = [2,1,2]
Output: 5
Example 2
Input: nums = [1,2,1,10]
Output: 0
Analysis
This problem requires trigonometry knowledge.
To form a triangle, 3 sides a, b, c should have the length, a + b > c, where c is the longest side.
The first step is to sort the given array, and test three elements from the biggest ones as c
, b
, a
.
If the condition, a + b > c
, satisfies, the perimeter is a + b + c
.
If not, shift the values to take the next biggest ones since the biggest value is too big to form a triangle.
After repeating this, we’ll get the answer.
Solution
class LargestPerimeterTriangle:
def largestPerimeter(self, nums: List[int]) -> int:
nums.sort()
for i in range(len(nums) - 3, -1, -1):
if nums[i] + nums[i + 1] > nums[i + 2]:
return nums[i] + nums[i + 1] + nums[i + 2]
return 0
# @param {Integer[]} nums
# @return {Integer}
def largest_perimeter(nums)
nums.sort!
(nums.length-3).downto(0) do |i|
if nums[i] + nums[i+1] > nums[i+2]
return [nums[i], nums[i+1], nums[i+2]].sum
end
end
0
end
Complexities
- Time:
O(nlog(n))
- Space:
O(1)