Published: Sep 23, 2022
Problem Description
Given an
m x n
grid of charactersboard
and a stringword
, return true if word exists in the grid.The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.
Constraints:
m == board.length
n = board[i].length
1 <= m, n <= 6
1 <= word.length <= 15
board
andword
consists of only lowercase and uppercase English letters.
Examples
Example 1
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true
Explanation:
[A] [B] [C] E
S F [C] S
A [D] [E] E
Example 2
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true
Explanation:
A B C E
S F C [S]
A D [E] [E]
Example 3
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false
How to Solve
This is a typical backtracking problem. Normally, a depth-first search works well. For the backtracking problem, how to get the state back to previous one is important. The solution here uses a special character “#” as visited status and set it back when the process goes back.
The loop goes the given word one by one. When the process reaches the last character of the given word, the loop finishes.
Ruby solution has two tweaks since the same Ruby solution as C++ or Python gets TLE. Especially, the character frequency based word reversing preprocess works well to cut down DFS loops.
Solution
class WordSearch {
public:
bool exist(vector<vector<char>>& board, string word) {
int m = board.size(), n = board[0].size();
function<bool(int, int, int)> dfs = [&](int row, int col, int idx) {
if (idx == word.size()) return true;
if (row < 0 || row >= m || col < 0 || col >= n || board[row][col] != word[idx]) return false;
char cur = board[row][col];
board[row][col] = '\0';
bool down = dfs(row + 1, col, idx + 1);
bool up = dfs(row - 1, col, idx + 1);
bool right = dfs(row, col + 1, idx + 1);
bool left = dfs(row, col - 1, idx + 1);
if (down || up || right || left) return true;
board[row][col] = cur;
return false;
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (dfs(i, j, 0)) return true;
}
}
return false;
}
};
class WordSearch:
def exist(self, board: List[List[str]], word: str) -> bool:
m, n = len(board), len(board[0])
def dfs(row, col, suffix):
if not suffix:
return True
cur = board[row][col]
board[row][col] = '#'
up = row - 1 >= 0 and board[row - 1][col] == suffix[0] and dfs(row - 1, col, suffix[1:])
left = col - 1 >= 0 and board[row][col - 1] == suffix[0] and dfs(row, col - 1, suffix[1:])
right = col + 1 < n and board[row][col + 1] == suffix[0] and dfs(row, col + 1, suffix[1:])
down = row + 1 < m and board[row + 1][col] == suffix[0] and dfs(row + 1, col, suffix[1:])
if up or left or right or down:
return True
board[row][col] = cur
for row in range(m):
for col in range(n):
if board[row][col] == word[0] and dfs(row, col, word[1:]):
return True
return False
# @param {Character[][]} board
# @param {String} word
# @return {Boolean}
def exist(board, word)
return false unless word.chars.all? { |char| board.flatten.include?(char) }
word = preprocess(board, word)
return false if word.nil?
m, n, l = board.size, board[0].size, word.size
board.size.times do |row|
board[0].size.times do |col|
return true if dfs(board, m, n, l, word, row, col, 0)
end
end
false
end
def preprocess(board, word)
board_freq = Hash.new(0)
board.each do |row|
row.each do |c|
board_freq[c] += 1
end
end
word_freq = word.chars.tally
word_freq.each do |c, count|
return nil if board_freq[c] < count
end
board_freq[word[0]] > board_freq[word[-1]] ? word.reverse : word
end
def dfs(board, m, n, l, word, row, col, idx)
return true if idx == l
return false if row < 0 || col < 0 || row >= m || col >= n || board[row][col] != word[idx]
cur = board[row][col]
board[row][col] = "#"
up = dfs(board, m, n, l, word, row - 1, col, idx + 1)
left = dfs(board, m, n, l, word, row, col - 1, idx + 1)
right = dfs(board, m, n, l, word, row, col + 1, idx + 1)
down = dfs(board, m, n, l, word, row + 1, col, idx + 1)
board[row][col] = cur
up || left || right || down
end
Complexities
- Time:
O(n * 3 ^ k)
– n: number of cells, k: length of the word, 3: one of four directions is where it comes from - Space:
O(k)