Published: Sep 18, 2022
Problem Description
Given
n
non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.Constraints:
n == height.length
1 <= n <= 2 * 10**4
0 <= height[i] <= 10**5
Examples
Example 1
Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: 6 units of rain water (blue section) are being trapped.
Example 2
Input: height = [4,2,0,3,2,5]
Output: 9
How to Solve
This problem might look like monotonic stack or dynamic programming. Both work, however, two pointers approach also works well. The trapped water is bounded by a lower height of left and right. Keep tracking the lower height is a key to solve this problem
The pointers start from leftmost and rightmost indicies. Set initial max heights for both left and right with the value of leftmost and rightmost indices. To keep tracking the lower height, take (the lower side max height - bar height at lower side height) and add it up to the total. Then, increment the pointer and maintain the max heights.
Solution
/**
* @param {number[]} height
* @return {number}
*/
var trap = function(height) {
if (height.length < 3) return 0
let left = 0, right = height.length - 1, result = 0
let left_max = height[left], right_max = height[right]
while (left < right) {
if (left_max <= right_max) {
result += left_max - height[left]
left++
left_max = Math.max(left_max, height[left])
} else {
result += right_max - height[right]
right--
right_max = Math.max(right_max, height[right])
}
}
return result
}
class TrappingRainWater:
def trap(self, height: List[int]) -> int:
n = len(height)
if n < 3:
return 0
left, right, total = 0, n - 1, 0
left_max, right_max = height[left], height[right]
while left < right:
if left_max <= right_max:
total += left_max - height[left]
left += 1
left_max = max(left_max, height[left])
else:
total += right_max - height[right]
right -= 1
right_max = max(right_max, height[right])
return total
# @param {Integer[]} height
# @return {Integer}
def trap(height)
return 0 if height.length < 3
left, right, result = 0, height.length - 1, 0
left_max, right_max = height[left], height[right]
while left < right
if left_max <= right_max
result += left_max - height[left]
left += 1
left_max = [left_max, height[left]].max
else
result += right_max - height[right]
right -= 1
right_max = [right_max, height[right]].max
end
end
result
end
Complexities
- Time:
O(n)
- Space:
O(1)