Published: Sep 30, 2022
Problem Description
Given the
root
of a binary tree, return the inorder traversal of its nodes’ values.Constraints:
- The number of nodes in the tree is in the range
[0, 100]
.-100 <= Node.val <= 100
https://leetcode.com/problems/binary-tree-inorder-traversal/
Examples
Example 1
Input: root = [1,null,2,3]
Output: [1,3,2]
Explanation:
1
\
2
/
3
Example 2
Input: root = []
Output: []
Example 3
Input: root = [1]
Output: [1]
How to Solve
This is a basic inorder traversal problem. Just visit all nodes in the binary tree following the inorder manner.
The tree traversal here takes the depth-first search (DFS) style. The traverse function does the DFS and saves values between going left and right nodes.
Solution
#include <vector>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class BinaryTreeInorderTraversal {
private:
vector<int> traverse(vector<int> &values, TreeNode *root)
{
if (root)
{
values = traverse(values, root->left);
values.push_back(root->val);
values = traverse(values, root->right);
}
return values;
}
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> values;
return traverse(values, root);
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class BinaryTreeInorderTraversal {
private List<Integer> traverse(List<Integer> values, TreeNode root) {
if (root == null) { return values; }
traverse(values, root.left);
values.add(root.val);
traverse(values, root.right);
return values;
}
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> values = new ArrayList<Integer>();
return traverse(values, root);
}
}
function TreeNode(val, left, right) {
this.val = (val===undefined ? 0 : val)
this.left = (left===undefined ? null : left)
this.right = (right===undefined ? null : right)
}
/**
* @param {TreeNode} root
* @return {number[]}
*/
var inorderTraversal = function(root) {
const traverse = function(values, root) {
if (root === null) { return values; }
values = traverse(values, root.left);
values.push(root.val);
values = traverse(values, root.right);
return values
}
return traverse([], root);
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from typing import Optional
class BinaryTreeInorderTraversal:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
def traverse(result, root):
if not root:
return result
result = traverse(result, root.left)
result.append(root.val)
result = traverse(result, root.right)
return result
return traverse([], root)
# Definition for a binary tree node.
# class TreeNode
# attr_accessor :val, :left, :right
# def initialize(val = 0, left = nil, right = nil)
# @val = val
# @left = left
# @right = right
# end
# end
# @param {TreeNode} root
# @return {Integer[]}
def traverse(values, root)
if !root
return values
end
traverse(values, root.left)
values << root.val
traverse(values, root.right)
values
end
def inorder_traversal(root)
traverse([], root)
end
Complexities
- Time:
O(n)
- Space:
O(n)