Published: Dec 10, 2022
Problem Description
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node’s values in the path.
Given the
root
of a binary tree, return the maximum path sum of any non-empty path.Constraints:
- The number of nodes in the tree is in the range
[1, 3 * 10**4]
.-1000 <= Node.val <= 1000
Examples
Example 1
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
1
/ \
2 3
Example 2
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
-10
/ \
9 20
/ \
15 7
How to Solve
Do postorder (DFS) traversal and calculate the value, The node value + left subtree value + right subtree value, which is the sum at the current root. Compare the value with the max value so far. When returning the value, considerable paths are: root + left subtree, root + right subtree, or 0 (doesn’t take this subtree). Return the max value of those three.
What needs to be care about is, how to save max value so far. Python solution pass it as a method argument and returns it. Ruby solution uses an instance variable. C++ solution passes a reference.
Solution
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class BinaryTreeMaximumPathSum {
private:
int traverse(TreeNode *root, int &max_v) {
if (!root) { return 0; }
int left = max(traverse(root->left, max_v), 0);
int right = max(traverse(root->right, max_v), 0);
max_v = max(max_v, root->val + left + right);
return root->val + max(left, right);
}
public:
int maxPathSum(TreeNode* root) {
int max_v = INT_MIN;
traverse(root, max_v);
return max_v;
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int max_v = Integer.MIN_VALUE;
private int traverse(TreeNode root) {
if (root == null) { return 0; }
int left = Math.max(traverse(root.left), 0);
int right = Math.max(traverse(root.right), 0);
max_v = Math.max(max_v, root.val + left + right);
return root.val + Math.max(left, right);
}
public int maxPathSum(TreeNode root) {
traverse(root);
return max_v;
}
}
function TreeNode(val, left, right) {
this.val = (val===undefined ? 0 : val)
this.left = (left===undefined ? null : left)
this.right = (right===undefined ? null : right)
}
/**
* @param {TreeNode} root
* @return {number}
*/
var maxPathSum = function(root) {
let max_v = Number.MIN_SAFE_INTEGER;
const traverse = (root) => {
if (root === null) { return 0; }
const left = Math.max(traverse(root.left), 0);
const right = Math.max(traverse(root.right), 0);
max_v = Math.max(max_v, root.val + left + right);
return root.val + Math.max(left, right)
};
traverse(root);
return max_v;
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from typing import Optional
class BinaryTreeMaximumPathSum:
def maxPathSum(self, root: Optional[TreeNode]) -> int:
def traverse(root: Optional[TreeNode], max_v: int) -> (int, int):
if not root: return max_v, 0
max_v, left = traverse(root.left, max_v)
max_v, right = traverse(root.right, max_v)
max_v = max(max_v, root.val + left + right)
return max_v, max(root.val + max(left, right), 0)
max_v, _ = traverse(root, float('-inf'))
return max_v
# Definition for a binary tree node.
# class TreeNode
# attr_accessor :val, :left, :right
# def initialize(val = 0, left = nil, right = nil)
# @val = val
# @left = left
# @right = right
# end
# end
# @param {TreeNode} root
# @return {Integer}
def max_path_sum(root)
@max_value = -Float::INFINITY
traverse = -> (root) {
return 0 if root.nil?
l_max = [traverse.call(root.left), 0].max
r_max = [traverse.call(root.right), 0].max
@max_value = [@max_value, root.val + l_max + r_max].max
return [root.val, root.val + [l_max, r_max].max].max
}
traverse.call(root)
@max_value
end
Complexities
- Time:
O(n)
- Space:
O(h)
– h: height of the binary tree